111 research outputs found

    Law and the Community: The End of Individualism?

    Get PDF
    Book review of Law and the Community: The End of Individualism? by A.C. Hutchinson & L.J.M. Green, eds. and published by Carswell (Toronto), 1989. (297 pp.

    The Captive Court: A Study of the Supreme Court of Canada, Ian Bushnell

    Get PDF
    Book review of The Captive Court: A Study of the Supreme Court of Canada by Ian Bushnell and published by McGill-Queen\u27s University Press (Montreal & Kingston), 1992. (604 pp.

    Affinity Classification Problem by Stochastic Cellular Automata

    Full text link
    This work introduces a new problem, named as, affinity classification problem which is a generalization of the density classification problem. To solve this problem, we introduce temporally stochastic cellular automata where two rules are stochastically applied in each step on all cells of the automata. Our model is defined on 2-dimensional grid having affection capability. We show that this model can be used in several applications like modeling self-healing systems

    Opposed-Flow Flame Spreading in Reduced Gravity

    Get PDF
    Experimental results obtained in drop towers and in Space Shuttle based experiments coupled with modelling efforts are beginning to provide information that is allowing an understanding to be developed of the physics of opposed-flow flame spread at reduced gravity where the spread rate and flow velocity are comparable and of the role played by radiative and diffusive processes in flame spreading in microgravity. Here we describe one Space Shuttle based experiment on flame spreading in a quiescent environment, the Solid Surface Combustion Experiment, SSCE, one planned microgravity experiment on flame spreading in a radiatively-controlled, forced opposing flow environment, the Diffusive and Radiative Transport in Fires Experiment, DARTFire, modelling efforts to support these experiments, and some results obtained to date

    The solid surface combustion experiment aboard the USML-1 mission

    Get PDF
    AA Experimental results from the five experiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. An experiment was conducted aboard STS-50/USML-1 in the solid Surface Combustion Experiment (SSCE) hardware for flame spread over a thin cellulosic fuel in a quiescent oxidizer of 35% oxygen/65% nitrogen at 1.0 atm. pressure in microgravity. The USML-1 test was the fourth of five planned experiments for thin fuels, one performed during each of five Space Shuttle Orbiter flights. Data that were gathered include gas- and solid-phase temperatures and motion picture flame images. Observations of the flame are described and compared to theoretical predictions from steady and unsteady models that include flame radiation from CO2 and H2O. Experimental results from the five esperiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. The brightness of the flame and the visible soot radiation also increase with increasing spread rate. Steady-state numerical predictions of temperature and spread rate and flame structure trends compare well with experimental results near the flame's leading edge while gradual flame evolution is captured through the unsteady model

    Solid surface combustion experiment flame spread in a quiescent, microgravity environment implications of spread rate and flame structure

    Get PDF
    A unique environment in which flame spreading, a phenomenon of fundamental, scientific interest, has importance to fire safety is that of spacecraft in which the gravitational acceleration is low compared with that of the Earth, i.e., microgravity. Experiments aboard eight Space Shuttle missions between October 1990 and February 1995 were conducted using the Solid Surface Combustion Experiment (SSCE) payload apparatus in an effort to determine the mechanisms of gas-phase flame spread over solid fuel surfaces in the absence of any buoyancy induced or externally imposed oxidizer flow. The overall SSCE effort began in December of 1984. The SSCE apparatus consists of a sealed container, approximately 0.039 cu m, that is filled with a specified O2/N2 mixture at a prescribed pressure. Five of the experiments used a thin cellulosic fuel, ashless filter paper, 3 cm wide x 10 cm long, 0.00825 cm half-thickness, ignited in five different ambient conditions. Three of the experiments, the most recent, used thick polymethylmethacrylate (PMMA) samples 0.635 cm wide x 2 cm long, 0.32 cm half-thickness. Three experiments, STS 41, 40 and 43, were designed to evaluate the effect of ambient pressure on flame spread over the thin cellulosic fuel while flights STS 50 and 47 were at the same pressure as two of the earlier flights but at a lower oxygen concentration in order to evaluate the effect of ambient oxygen level on the flame spread process at microgravity. For the PMMA flights, two experiments, STS 54 and 63, were at the same pressure but different oxygen concentrations while STS 64 was at the same oxygen concentration as STS 63 but at a higher pressure. Two orthogonal views of the experiments were recorded on 16 mm cine-cameras operating at 24 frames/s. In addition to filmed images of the side view of the flames and surface view of the burning samples, solid- and gas-phase temperatures were recorded using thermocouples. The experiment is battery powered and follows an automated sequence upon activation by the Shuttle Crew. In this study we separate the SSCE data into two groups according to the fuel type: (1) thin cellulose; and (2) thick PMMA. The experimental spread rates are compared with prediction from a number of models in an effort to uncover the important physics that characterize microgravity flame spread. Both steady and unsteady solutions are employed to explore the flame evolution, especially for thick fuels. Finally, the flame structure in downward spread is compared with the microgravity flame structure and modeling results to delineate the difference between the two configurations and the influence of normal gravity
    corecore